Publication

Temperature dependence of irradiation effects in pure titanium

Nadine Baluc
2005
Journal paper
Abstract

The microstructural modifications due to irradiation in hcp pure metals and their consequences on the mechanical properties have been investigated. Experimental results for proton-irradiated pure polycrystalline titanium are presented and discussed. Samples have been irradiated with 590 MeV protons to a low dose range at two different temperatures, room temperature and 523 K. Defect sizes and densities as a function of dose have been determined by means of transmission electron microscopy observations, and hardening has been measured from uniaxial tensile stress-strain curves. The dose dependence of the irradiation hardening has been found to depend strongly on the investigated temperatures. These results are discussed in terms of the main deformation mechanism operating at each temperature.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Stress–strain curve
In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.
Tensile testing
Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics.
Stress–strain analysis
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
Show more
Related publications (33)

Static and Fatigue Biaxial Flexural Behavior of Strain-Hardening UHPFRC Thin Slab Elements

Xiujiang Shen

Cast-in-place thin layers of Ultra-High Performance Fiber Reinforced Cementitious Composites (UHPFRC) on the specific zones of existing reinforced concrete (RC) bridge decks has been demonstrated to be a technically efficient and economic rehabilitation an ...
EPFL2020

Investigations and numerical modeling of mechanical properties of tempered martensitic steel Eurofer97 at various loading rates, temperatures and after spallation irradiation

Serafin Knitel

The reduced activation tempered martensitic steel Eurofer97 is a reference steel for a structural applica-tions in fusion reactors. The first-wall and blanket materials will be subjected to high thermal and neutron fluxes and will experience very complex, ...
EPFL2018

Thermal Activation, Intermittency and Size Effects in the Plastic Deformation of Cast Aluminium Microwires

Suzanne Godelieve Alphonsine Verheyden

The microcasting process is a scaled-down investment casting process in which molten metal is pressure-infiltrated and directionally solidified in water-soluble moulds. It was previously developed to produce metallic microwires with a diameter (D) between ...
EPFL2018
Show more
Related MOOCs (7)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more