Publication

A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst

Abstract

The use of formic acid as a hydrogen-storage material has become more feasible thanks to the development of a homogeneous catalytic system of ruthenium water-soluble complexes (Ru/TPPTS; TPPTS=meta-trisulfonated triphenylphosphine) that selectively decomposes HCOOH into H2 and CO2. Continuous generation of H2 of very high purity, over a wide range of pressures, and under mild conditions was achieved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (24)
Hydrogen storage
Several methods exist for storing hydrogen. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand. While large amounts of hydrogen are produced by various industries, it is mostly consumed at the site of production, notably for the synthesis of ammonia. For many years hydrogen has been stored as compressed gas or cryogenic liquid, and transported as such in cylinders, tubes, and cryogenic tanks for use in industry or as propellant in space programs.
Energy storage
Energy storage is the capture of energy produced at one time for use at a later time to reduce imbalances between energy demand and energy production. A device that stores energy is generally called an accumulator or battery. Energy comes in multiple forms including radiation, chemical, gravitational potential, electrical potential, electricity, elevated temperature, latent heat and kinetic. Energy storage involves converting energy from forms that are difficult to store to more conveniently or economically storable forms.
Hydrogen vehicle
A hydrogen vehicle is a vehicle that uses hydrogen fuel for motive power. Hydrogen vehicles include hydrogen-fueled space rockets, as well as ships and aircraft. Power is generated by converting the chemical energy of hydrogen to mechanical energy, either by reacting hydrogen with oxygen in a fuel cell to power electric motors or, less commonly, by burning hydrogen in an internal combustion engine. there are two models of hydrogen cars publicly available in select markets: the Toyota Mirai (2014–), which is the world's first mass-produced dedicated fuel cell electric vehicle (FCEV), and the Hyundai Nexo (2018–).
Show more
Related publications (33)

Using Complex Hydrides for Hydrogen Storage and Direct Borohydride Fuel Cells for Electricity Production

Youngdon Ko

Hydrogen storage and utilization are the technologies to achieve carbon-neutral energy systems with renewable energy sources. Among the various materials that have been investigated, complex hydrides are a material exhibiting high gravimetric hydrogen dens ...
EPFL2023

Increasing the Energy Efficiency of Gas Boosters for Hydrogen Storage and for Refueling Stations

Alfred Rufer

A new electrically driven gas booster is described as an alternative to the classical air-driven gas boosters known for their poor energetic efficiency. These boosters are used in small scale Hydrogen storage facilities and in refueling stations for Hydrog ...
MDPI2023

Lab-Scale Investigation of the Integrated Backup/Storage System for Wind Turbines Using Alkaline Electrolyzer

Jan Van Herle, Hossein Pourrahmani

The depletion of fossil fuel sources has encouraged the authorities to use renewable resources such as wind energy to generate electricity. A backup/storage system can improve the performance of wind turbines, due to fluctuations in power demand. The novel ...
MDPI2023
Show more
Related MOOCs (2)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.