Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We provide a complete experimental characterization of stimulated Brillouin scattering in a 160 m long solid-core photonic crystal fiber, including threshold and spectrum measurements as well as positionresolved mapping of the Brillouin frequency shift. In particular, a three-fold increase of the Brillouin threshold power is observed, in excellent agree-ment with the spectrally-broadened Brillouin gain spectrum. Distributed measurements additionally reveal that the rise of the Brillouin threshold results from the broadband nature of the gain spectrum all along the fiber and is strongly influenced by strain. Our experiments confirm that these unique fibers can be exploited for the passive control or the suppression of Brillouin scattering. © 2007 Optical Society of America.