Publication

Synthesis, structure and oxygen thermally programmed desorption spectra of La1−xCaxAlyFe1−yO3−δ perovskites

Jan Van Herle
2006
Journal paper
Abstract

Perovskites La1−xCaxAlyFe1−yO3−δ (x, y = 0 to 1) were prepared by high-temperature solid-state synthesis based on mixtures of oxides produced by colloidal milling. The XRD analysis showed that perovskites La0.5Ca0.5AlyFe1−yO3−δ with a high Fe content (1−y = 0.8–1.0) were of orthorhombic structure, perovskites with a medium Fe content (1−y = 0.8–0.5) were of rhombohedral structure, and perovskite with the lowest Fe content (1−y = 0.2) were of cubic structure. Thermally programmed desorption (TPD) of oxygen revealed that chemical desorption of oxygen in the temperature range from 200 to 1000 ◦C had proceeded in the two desorption peaks. The low-temperature -peak (in the 200–550 ◦C temperature range) was brought about by oxygen liberated from oxygen vacancies; the high-temperature -peak (in the 550–1000 ◦C temperature range) corresponded to the reduction of Fe4+ to Fe3+. The chemidesorption oxygen capacity increased with increasing Ca content and decreased with increasing Al content in the perovskites. The Al3+ ions restricted, probably for kinetic reasons, the reduction of Fe4+ and the high-temperature oxygen desorption associated with it.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.