Publication

Identification and the information matrix: how to get just sufficiently rich?

Ljubisa Miskovic
2009
Journal paper
Abstract

In prediction error identification, the information matrix plays a central role. Specifically, when the system is in the model set, the covariance matrix of the parameter estimates converges asymptotically, up to a scaling factor, to the inverse of the information matrix. The existence of a finite covariance matrix thus depends on the positive definiteness of the information matrix, and the rate of convergence of the parameter estimate depends on its “size”. When the system is not in the model set, the nonsingularity of the information matrix at all identifiable values of the parameter vector is a necessary condition for the asymptotic convergence of the identification algorithm. The information matrix is also the key tool in the solution of optimal experiment design procedures, which have become a focus of recent attention. Introducing a geometric framework, we provide a complete analysis, for arbitrary model structures, of the minimum degree of richness required to guarantee the nonsingularity of the information matrix. We then particularize these results to all commonly used model structures, both in open loop and in closed loop. In a closed-loop setup, our results provide an unexpected and precisely quantifiable trade-off between controller degree and required degree of external excitation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Covariance matrix
In probability theory and statistics, a covariance matrix (also known as auto-covariance matrix, dispersion matrix, variance matrix, or variance–covariance matrix) is a square matrix giving the covariance between each pair of elements of a given random vector. Any covariance matrix is symmetric and positive semi-definite and its main diagonal contains variances (i.e., the covariance of each element with itself). Intuitively, the covariance matrix generalizes the notion of variance to multiple dimensions.
Estimator
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. For example, the sample mean is a commonly used estimator of the population mean. There are point and interval estimators. The point estimators yield single-valued results. This is in contrast to an interval estimator, where the result would be a range of plausible values.
Covariance
In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the lesser values (that is, the variables tend to show similar behavior), the covariance is positive. In the opposite case, when the greater values of one variable mainly correspond to the lesser values of the other, (that is, the variables tend to show opposite behavior), the covariance is negative.
Show more
Related publications (50)

A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set

Daniel Kuhn, Yves Rychener, Viet Anh Nguyen

The state-of-the-art methods for estimating high-dimensional covariance matrices all shrink the eigenvalues of the sample covariance matrix towards a data-insensitive shrinkage target. The underlying shrinkage transformation is either chosen heuristically ...
2024

TIC-TAC: A Framework for Improved Covariance Estimation in Deep Heteroscedastic Regression

Mathieu Salzmann, Alexandre Massoud Alahi, Megh Hiren Shukla

Deep heteroscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood. However, recent works show that this may result in sub-optimal convergence due to the challenges associated ...
2024

Positive Definite Completions and Continuous Graphical Models

Kartik Waghmare

This thesis concerns the theory of positive-definite completions and its mutually beneficial connections to the statistics of function-valued or continuously-indexed random processes, better known as functional data analysis. In particular, it dwells upon ...
EPFL2023
Show more
Related MOOCs (14)
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algebra (part 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.