Publication

A Scale-Space of Cortical Feature Maps

Abstract

In this paper we define a scale-space for cortical mean curvature maps on the sphere, that offers a hierarchical representation of the brain cortical structures, useful in multi-scale registration and analysis algorithms. A spherical feature map is obtained through inflation of the cortical surface of one hemisphere, extracted from structural MR images. Using the Beltrami framework, we embed this spherical mesh in a higher dimensional space and the feature assigned to a mesh vertex becomes an additional component of its coordinates. This enhanced mesh then evolves under Beltrami flow. Imposing an appropriate aspect ratio for the feature components, we thus minimize an interpolation between the L2L_2 and TV-norm of the map. The collection of all maps produced by this PDE forms a scale-space. Our results suggest that this scale-space provides a generalization of the brain map suitable for use e.g. within a multi-scale registration framework.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.