Publication

SPH High-Performance Computing simulations of rigid solids impacting the free-surface of water

Abstract

Numerical simulations of water entries based on a three-dimensional parallelized Smoothed Particle Hydrodynamics (SPH) model developed by Ecole Centrale Nantes are presented. The aim of the paper is to show how such SPH simulations of complex 3D problems involving a free surface can be performed on a super computer like the IBM Blue Gene/L with 8,192 cores of Ecole polytechnique fédérale de Lausanne. The present paper thus presents the different techniques which had to be included into the SPH model to make possible such simulations. Memory handling, in particular, is a quite subtle issue because of constraints due to the use of a variable-h scheme. These improvements made possible the simulation of test cases involving hundreds of million particles computed by using thousands of cores. Speedup and efficiency of these parallel calculations are studied. The model capabilities are illustrated in the paper for two water entry problems, firstly, on a simple test case involving a sphere impacting the free surface at high velocity; and secondly, on a complex 3D geometry involving a ship hull impacting the free surface in forced motion. Sensitivity to spatial resolution is investigated as well in the case of the sphere water entry, and the flow analysis is performed by comparing both experimental and theoretical reference results.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Smoothed-particle hydrodynamics
Smoothed-particle hydrodynamics (SPH) is a computational method used for simulating the mechanics of continuum media, such as solid mechanics and fluid flows. It was developed by Gingold and Monaghan and Lucy in 1977, initially for astrophysical problems. It has been used in many fields of research, including astrophysics, ballistics, volcanology, and oceanography. It is a meshfree Lagrangian method (where the co-ordinates move with the fluid), and the resolution of the method can easily be adjusted with respect to variables such as density.
Surface energy
In surface science, surface free energy (also interfacial free energy or surface energy) quantifies the disruption of intermolecular bonds that occurs when a surface is created. In solid-state physics, surfaces must be intrinsically less energetically favorable than the bulk of the material (the atoms on the surface have more energy compared with the atoms in the bulk), otherwise there would be a driving force for surfaces to be created, removing the bulk of the material (see sublimation).
Surface tension
Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to float on a water surface without becoming even partly submerged. At liquid–air interfaces, surface tension results from the greater attraction of liquid molecules to each other (due to cohesion) than to the molecules in the air (due to adhesion). There are two primary mechanisms in play.
Show more
Related publications (34)

A cut-cell method for the numerical simulation of 3D multiphase flows with strong interfacial effects

Marco Picasso, Alexandre Caboussat, Alexandre Masserey, Julien Hess

We present a numerical model for the approximation of multiphase flows with free surfaces and strong interfacial effects. The model relies on the multiphase incompressible Navier-Stokes equations, and includes surface tension effects on the interfaces betw ...
Academic Press Inc Elsevier Science2024

STEPS 4.0: Fast and memory-efficient molecular simulations of neurons at the nanoscale

James Gonzalo King, Pramod Shivaji Kumbhar, Iain Hepburn, Weiliang Chen, Tristan Mathieu Carel, Alessandro Cattabiani, Nicola Cantarutti, Omar Awile, Christos Kotsalos, Samuel Marie A Melchior, Baudouin Paul Michel Maria Joseph Del Marmol, Giacomo Castiglioni

Recent advances in computational neuroscience have demonstrated the usefulness and importance of stochastic, spatial reaction-diffusion simulations. However, ever increasing model complexity renders traditional serial solvers, as well as naive parallel imp ...
FRONTIERS MEDIA SA2022

From coating flow patterns to porous body wake dynamics via multiscale models

Pier Giuseppe Ledda

Multiscale phenomena are involved in countless problems in fluid mechanics. Coating flows are known to exhibit a broad variety of patterns, such as wine tears in a glass and dripping of fresh paint applied on a wall. Coating flows are typically modeled und ...
EPFL2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.