Publication

Individually addressable gel-integrated voltammetric microelectrode array for high-resolution measurement of concentration profiles at interfaces

2001
Journal paper
Abstract

The application of a novel voltammetric probe, based on an individually addressable gel-integrated microelectrode array (IA-GIME), for real-time, high-spatial resolution concentration profile measurements at interfaces is described. Reliability and validity of steep metal concentration gradients obtained with this novel system have been demonstrated by performing systematic tests at well-controlled liquid-liquid and liquid-solid interfaces. The liquid-liquid interface was formed by two layers of aqueous solutions with different components; only one layer contained trace metal ions (Pb(II) and Cd(II)); the individually addressable microelectrode array was placed at the interface of the liquid-liquid system; the concentration profiles were recorded as function of time; and the effective diffusion coefficients were calculated. The liquid-"solid" interface was formed from an aqueous solution layer overlying a bed of silica particles saturated with an aqueous solution. The sensor array has been used to monitor the diffusion processes of Tl(I) or Pb(II) from the liquid phase to the "solid" phase. The influences of porosity, geometry of the porous media, and complexation between metal ion and silica, on the diffusion processes, have been studied. All these results show that correct diffusion profiles of metal ions at interfaces can be obtained with 200-μm resolution with the IA-GIME. They also demonstrate that, for measurements in "solid" phase, the aforementioned factors must be considered carefully for correct calibration of any electrodes and the gel-integrated microelectrodes are unique tools to enable calibration of the sensors with synthetic solutions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.