Publication

Blockade of CD28/B7 co-stimulation by mCTLA4-Hgamma1 inhibits antigen-induced lung eosinophilia but not Th2 cell development or recruitment in the lung

Nicola Harris
1997
Journal paper
Abstract

We have studied the role of the CD28/B7 co-stimulatory pathway in the development of a Th2-type lung immune response. Mice injected two or three times intraperitoneally with ovalbumin in alum adjuvant and then re-exposed to the same antigen by intranasal (i.n.) inoculation show infiltration of the lung tissue and appearance in the broncho-alveolar lavage (BAL) fluid of significant numbers of eosinophils and lymphocytes, in a pattern which is reminiscent of asthmatic inflammation. The accumulation of eosinophils in the airways is completely dependent on interleukin (IL)-5 secretion by CD4+ T cells. We have used mice transgenic for a soluble form of murine CTLA-4 (mCTLA4-Hgamma1) which binds to B7 molecules on antigen-presenting cells, thereby preventing their interaction with T cell-expressed CD28. mCTLA4-Hgamma1-transgenic mice immunized intraperitoneally and challenged i.n. with ovalbumin failed to generate any eosinophil infiltration, suggesting that little or no IL-5 was secreted in the lungs of these mice. In contrast with the complete lack of eosinophils, the numbers and phenotypes of infiltrating lymphocytes were comparable in the lungs of mCTLA4-Hgamma1-transgenic and normal mice. Also, lung lymphocytes from immunized mCTLA4-Hgamma1-transgenic and normal mice could be shown to secrete comparable amounts of IL-4 and IL-5 when stimulated in culture in the absence of mCTLA4-Hgamma1. We conclude that mCTLA4-Hgamma1 can efficiently block the production of IL-5 during in vivo responses and inhibit eosinophil recruitment, but that it does not block the development of CD4+ T cells into Th2 cells with the potential to secrete IL-5.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (36)
T helper cell
The T helper cells (Th cells), also known as CD4+ cells or CD4-positive cells, are a type of T cell that play an important role in the adaptive immune system. They aid the activity of other immune cells by releasing cytokines. They are considered essential in B cell antibody class switching, breaking cross-tolerance in dendritic cells, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages and neutrophils.
Antigen-presenting cell
An antigen-presenting cell (APC) or accessory cell is a cell that displays antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes using their T cell receptors (TCRs). APCs process antigens and present them to T-cells. Almost all cell types can present antigens in some way. They are found in a variety of tissue types.
Antigen
In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune response. Antigens can be proteins, peptides (amino acid chains), polysaccharides (chains of simple sugars), lipids, or nucleic acids. Antigens exist on normal cells, cancer cells, parasites, viruses, fungi, and bacteria. Antigens are recognized by antigen receptors, including antibodies and T-cell receptors.
Show more
Related publications (43)

Unlocking Hidden Potential: Exploring the Complexities of Signaling in Immune Cell Activation to Optimize CAR Therapy

Mathieu Girardin

Chimeric antigen receptors (CARs) are synthetic, transmembrane proteins that trigger immune cell signaling following their engagement. They have been first utilized in T cells and later in natural killer (NK) cells to redirect their cytotoxicity toward a s ...
EPFL2023

Direct In Vivo Activation of T Cells with Nanosized Immunofilaments Inhibits Tumor Growth and Metastasis

Bart Deplancke, Guido Van Mierlo, Jorieke Weiden

Adoptive T cell therapyhas successfully been implementedfor thetreatment of cancer. Nevertheless, ex vivo expansion of T cells byartificial antigen-presenting cells (aAPCs) remains cumbersome andcan compromise T cell functionality, thereby limiting their t ...
AMER CHEMICAL SOC2023

Protein Engineering for Personalized therapy and diagnosis

Lixia Wei

Protein Engineering, especially protein post-translational modification (PTM), ex-tends proteomes in a more complex way than one can expect from analysis of their encod-ing genomes. It can activate or deactivate certain catalytic functions, add new desired ...
EPFL2022
Show more
Related MOOCs (13)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.