Publication

A Dual Modifier-Adaptation Approach for Real-Time Optimization

Résumé

For good performance in practice, real-time optimization schemes need to be able to deal with the inevitable plant-model mismatch problem. Unlike the two-step schemes combining parameter estimation and optimization, the modifier-adaptation approach does not require the model parameters to be estimated on-line. Instead, it uses information regarding the constraints and selected gradients to improve the plant operation. The dual modifier-adaptation approach presented in this paper drives the process towards optimality, while paying attention to the accuracy of the estimated gradients. The gradients are estimated from successive operating points generated by the optimization algorithm. The novelty lies in the development of an upper bound on the norm of the gradient errors, which is used as a constraint when determining the next operating point. The proposed approach is demonstrated via numerical simulation for both an unconstrained and a constrained problem.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.