Publication

Hierarchical Integration of Phonetic and Lexical Knowledge in Phone Posterior Estimation

Hervé Bourlard, Hamed Ketabdar
2008
Article de conférence
Résumé

Phone posteriors has recently quite often used (as additional features or as local scores) to improve state-of-the-art automatic speech recognition (ASR) systems. Usually, better phone posterior estimates yield better ASR performance. In the present paper we present some initial, yet promising, work towards hierarchically improving these phone posteriors, by implicitly integrating phonetic and lexical knowledge. In the approach investigated here, phone posteriors estimated with a multilayer perceptron (MLP) and short (9 frames) temporal context, are used as input to a second MLP, spanning a longer temporal context (e.g. 19 frames of posteriors) and trained to refine the phone posterior estimates. The rationale behind this is that at the output of every MLP, the information stream is getting simpler (converging to a sequence of binary posterior vectors), and can thus be further processed (using a simpler classifier) by looking at a larger temporal window. Longer term dependencies can be interpreted as phonetic, sub-lexical and lexical knowledge. The resulting enhanced posteriors can then be used for phone and word recognition, in the same way as regular phone posteriors, in hybrid HMM/ANN or Tandem systems. The proposed method has been tested on TIMIT, OGI Numbers and Conversational Telephone Speech (CTS) databases, always resulting in consistent and significant improvements in both phone and word recognition rates.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (24)
Reconnaissance automatique de la parole
vignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.
Loi exponentielle
Une loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement, ou sans usure : la probabilité que le phénomène dure au moins s + t heures (ou n'importe quelle autre unité de temps) sachant qu'il a déjà duré t heures sera la même que la probabilité de durer s heures à partir de sa mise en fonction initiale. En d'autres termes, le fait que le phénomène ait duré pendant t heures ne change rien à son espérance de vie à partir du temps t.
Apprentissage profond
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Afficher plus
Publications associées (40)

A Two-Step Approach To Leverage Contextual Data: Speech Recognition In Air-Traffic Communications

Petr Motlicek, Juan Pablo Zuluaga Gomez, Amrutha Prasad

Automatic Speech Recognition (ASR), as the assistance of speech communication between pilots and air-traffic controllers, can significantly reduce the complexity of the task and increase the reliability of transmitted information. ASR application can lead ...
IEEE2022

Multilingual Training and Adaptation in Speech Recognition

Sibo Tong

State-of-the-art acoustic models for Automatic Speech Recognition (ASR) are based on Hidden Markov Models (HMM) and Deep Neural Networks (DNN) and often require thousands of hours of transcribed speech data during training. Therefore, building multilingual ...
EPFL2020

G2-VER: Geometry Guided Model Ensemble for Video-based Facial Expression Recognition

Jean-Philippe Thiran, Guillaume Marc Georges Vray, Hazim Kemal Ekenel, Tanguy Albrici

This paper addresses the problem of automatic facial expression recognition in videos, where the goal is to predict discrete emotion labels best describing the emotions expressed in short video clips. Building on a pre-trained convolutional neural network ...
IEEE2019
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.