Publication

Broadcast News Story Segmentation Using Social Network Analysis and Hidden Markov Models

Sarah Favre, Alessandro Vinciarelli
2007
Conference paper
Abstract

This paper presents an approach for the segmentation of broadcast news into stories. The main novelty of this work is that the segmentation process does not take into account the content of the news, i.e. what is said, but rather the structure of the social relationships between the persons that in the news are involved. The main rationale behind such an approach is that people interacting with each other are likely to talk about the same topics, thus social relationships are likely to be correlated to stories. The approach is based on Social Network Analysis (for the representation of social relationships) and Hidden Markov Models (for the mapping of social relationships into stories). The experiments are performed over 26 hours of radio news and the results show that a fully automatic process achieves a purity higher than 0.75.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.