Spatially resolved analyses, by energy-dispersive X-ray spectroscopy (EDS) scanning electron microscopy (SEM), allowed the quantification of exogenous Si contamination in a solid oxide fuel cell (SOFC) cathode after operation. The Si quantification, taking into account the endogenous Si impurity level, correlated well with the expectation from the condensation of Si(OH)4 vapor, originating from upstream alloy components and saturated in the hot inlet air. At higher resolution, EDS-transmission electron microscopy (TEM) pointed out the deposition of Si vapor in the form of amorphous SiO2, blocking oxygen incorporation into the electrolyte phase within a composite SOFC cathode.
Ardemis Anoush Boghossian, Melania Reggente, Mohammed Mouhib, Fabian Fischer, Hanxuan Wang, Charlotte Elisabeth Marie Roullier, Patricia Brandl
Cécile Hébert, Duncan Thomas Lindsay Alexander, James Badro, Farhang Nabiei, Hui Chen