Publication

Effect of Stacking Order on the Electric-Field Induced Carrier Modulation in Graphene Bilayers

Abstract

When planar graphene sheets are stacked on top of each other, the electronic structure of the system varies with the position of the subsequent sublattice atoms. Here, we employ scanning photocurrent microscopy to study the disparity in the behavior of charge carriers for two different stacking configurations. It has been found that deviation from the regular Bernal stacking decouples the sheets from each other, which Imparts effective electrostatic screening of the farther layer from the underlying backgate. Electrochemical top-gating is demonstrated as a means to selectively tune the charge carrier density in the decoupled upper layer.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.