Publication

Selective Enhancement of Carbon Nanotube Photoluminescence by Resonant Energy Transfer

Abstract

We report on a simple method for enhancing the efficiency of photoluminescence (PL) emission from selected chiral forms of semiconducting single-wall carbon nanotubes (SWCNTs). The method is based on the use of a fluorescent dye (Nile blue A) that shows the capability of resonant energy transfer on to nanotubes. The excitation of Nile blue A in the presence of SWCNTs results in the quenching of its fluorescence and the energy is resonantly transferred to certain chiral forms. The PL emission from these chiral forms shows a marked increase in efficiency signifying the occurrence of Forster type resonant energy transfer (FRET). Due to its simplicity, this procedure has widespread implications for the detection of carbon nanotubes as well as for their use as fluorophores in FRET-based in vivo and in vitro biological applications.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.