Vaccines aiming to activate cytotoxic T cells require cross-presentation of exogenous antigen by antigen-presenting cells (APCs). We recently developed a synthetic nanoparticle vaccine platform that targets lymph node-resident dendritic cells (DCs), capable of mounting an immune response to conjugated antigen. Here, we explore routes of processing and the efficiency of MHC I cross-presentation of OVA peptides conjugated using both reducible and non-reducible linkages, exploring the hypothesis that reduction-sensitive conjugation will lead to better antigen cross-presentation. Both clathrin and macropinocytic pathways were implicated in nanoparticle uptake by colocalization and inhibitor studies. Cross-presentation by DCs was demonstrated by direct antibody staining and in vitro stimulation of CD8(+) T cells from OT-I mice and was indeed most efficient with the reduction-sensitive conjugation. Similarly, we observed IFN-γ production by CD4(+) T cells from OT-II mice. Finally, immunization with the OVA peptide-bearing nanoparticles resulted in in vivo proliferation and IFN-γ production by adoptively transferred CD8(+) OT-I T cells and was also most efficient with reduction-sensitive linking of the peptide antigen. These results demonstrate the relevance of the poly(propylene sulfide) nanoparticle vaccine platform and antigen conjugation scheme for activating both cytotoxic and helper T cell responses.
Florence Pojer, George Coukos, Kelvin Ka Ching Lau, Amédé Noredine Larabi, Julien Racle, David Gfeller, Marta Andreia Da Silva Perez, Alexandre Harari
Bart Deplancke, Guido Van Mierlo, Jorieke Weiden