Publication

Structured random codes and sensor network coding theorems

Michael Christoph Gastpar
2008
Conference paper
Abstract

In the Shannon-theoretic analysis of joint source-channel coding problems, achievability is usually established via a two-stage approach: The sources are compressed into bits, and these bits are reliably communicated across the noisy channels. Random coding arguments are the backbone of both stages of the proof. This "separation" strategy not only establishes the optimal performance for stationary ergodic point-to-point problems, but also for a number of simple network situations, such as independent sources that are communicated with respect to separate fidelity criteria across a multiple-access channel. Beyond such simple cases, for general networks, separation-based coding is suboptimal. For instance, for a simple Gaussian sensor network, uncoiled transmission is exactly optimal and performs exponentially better than a separation-based solution. In this note, we generalize this sensor network strategy by employing a lattice code. The underlying linear structure of our code is crucial to its success.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Noisy-channel coding theorem
In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel. This result was presented by Claude Shannon in 1948 and was based in part on earlier work and ideas of Harry Nyquist and Ralph Hartley.
Linear network coding
In computer networking, linear network coding is a program in which intermediate nodes transmit data from source nodes to sink nodes by means of linear combinations. Linear network coding may be used to improve a network's throughput, efficiency, and scalability, as well as reducing attacks and eavesdropping. The nodes of a network take several packets and combine for transmission. This process may be used to attain the maximum possible information flow in a network.
Channel capacity
Channel capacity, in electrical engineering, computer science, and information theory, is the tight upper bound on the rate at which information can be reliably transmitted over a communication channel. Following the terms of the noisy-channel coding theorem, the channel capacity of a given channel is the highest information rate (in units of information per unit time) that can be achieved with arbitrarily small error probability. Information theory, developed by Claude E.
Show more
Related publications (39)

On Speed and Advantage : Results in Information Velocity and Monitoring Problems

Reka Inovan

Information theory has allowed us to determine the fundamental limit of various communication and algorithmic problems, e.g., the channel coding problem, the compression problem, and the hypothesis testing problem. In this work, we revisit the assumptions ...
EPFL2024

Optima Age Over Erasure Channels

Emre Telatar, Elie Najm, Rajai Nasser

Previous works on age of information and erasure channels have dealt with specific models and computed the average age or average peak age for certain settings. In this paper, given a source that produces a letter every T-s seconds and an erasure channel t ...
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC2022

Symmetry in design and decoding of polar-like codes

Kirill Ivanov

The beginning of 21st century provided us with many answers about how to reach the channel capacity. Polarization and spatial coupling are two techniques for achieving the capacity of binary memoryless symmetric channels under low-complexity decoding algor ...
EPFL2022
Show more
Related MOOCs (2)
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.