Doping and temperature dependent studies of optical phonon modes in Fe-122 pnictides are performed using Raman scattering experiments and compared with model calculations to elucidate the role of electron-phonon and spin-phonon interaction in this family of compounds. The frequency and linewidth of the B-1g mode at around 210 cm(-1) is highlighted as appreciable anomalies at the superconducting and spin density wave transitions are observed that strongly depend on composition. We give estimates of the electron-phonon coupling related to this renormalization and calculate the phonon self-energy on the basis of a four-band model comparing different symmetries of the order parameters. In addition, we observe a pronounced quasi-elastic Raman response for the undoped compound, suggesting persisting magnetic fluctuations in the spin density wave state.
Fabrizio Carbone, Thorsten Schmitt, Ivan Madan, Christophe Berthod, Francesco Barantani, Yi Tseng, Dirk Van der Marel