Publication

Optimization of high efficiency silicon heterojunction solar cells using silane-plasma diagnostics

Abstract

In silicon heterojunction solar cells, the passivation of the crystalline silicon wafer surfaces and fabrication of emitter and back surface field are all performed by intrinsic and doped amorphous silicon thin layers, usually deposited by plasma-enhanced chemical vapor deposition (PECVD). Since the properties of materials deposited by PEVCD are directly linked to the plasma properties, plasma diagnostics are very useful tools to optimize such devices. A novel diagnostic has been developed to measure in-situ the molecular silane depletion fraction in the plasma during deposition. It is found that the silane depletion strongly depends on the process parameters, and appears to be a relevant parameter for the quality of the passivating layers. Good passivation is indeed obtained from highly depleted silane plasmas. Based on this, layers deposited in a large-area PECVD reactor working at very high frequency (40.68 MHz) were optimized for heterojunction solar cells. All other fabrication steps were also fully industry compatible, using sputtering for transparent conductive oxide layers and screenprinting for the front grid. The best 2 x 2 cm2 cell shows a high open-circuit voltage of 717 mV, yielding a conversion efficiency of 20.3% (aperture area). Keywords: Heterojunction, PECVD, High-Efficiency

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Crystalline silicon
Crystalline silicon or (c-Si) Is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semiconducting material used in photovoltaic technology for the production of solar cells. These cells are assembled into solar panels as part of a photovoltaic system to generate solar power from sunlight. In electronics, crystalline silicon is typically the monocrystalline form of silicon, and is used for producing microchips.
Multi-junction solar cell
Multi-junction (MJ) solar cells are solar cells with multiple p–n junctions made of different semiconductor materials. Each material's p-n junction will produce electric current in response to different wavelengths of light. The use of multiple semiconducting materials allows the absorbance of a broader range of wavelengths, improving the cell's sunlight to electrical energy conversion efficiency. Traditional single-junction cells have a maximum theoretical efficiency of 33.16%.
Solar-cell efficiency
Solar-cell efficiency refers to the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell. The efficiency of the solar cells used in a photovoltaic system, in combination with latitude and climate, determines the annual energy output of the system. For example, a solar panel with 20% efficiency and an area of 1 m2 will produce 200 kWh/yr at Standard Test Conditions if exposed to the Standard Test Condition solar irradiance value of 1000 W/m2 for 2.
Show more
Related publications (116)

Font Side Solutions for c-Si Solar Cells with High-Temperature Passivating Contacts

Ezgi Genç

In this work, we studied the potential of using thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) for two main purposes: introducing an n-type passivating contact at the front of a TOPCon solar cell, or simplifying the fabrication o ...
EPFL2024

Piezoelectric and elastic properties of Al0.60Sc0.40N thin films deposited on patterned metal electrodes

Luis Guillermo Villanueva Torrijo, Silvan Stettler, Marco Liffredo, Nan Xu, Federico Peretti

Sc-doped aluminum nitride (AlScN) allows for piezoelectric devices with large electromechanical coupling and the benefits increase with larger Sc doping in the film. However, with a larger Sc concentration, the process window narrows, and it is necessary t ...
2024

III-V Nitride Semiconductors Deposited At Low Temperature For Photovoltaic Applications

Jonathan Emanuel Thomet

This thesis reports on the study and use of low temperature processes for the deposition of indium gallium nitride (InGaN) thin films in order to alleviate some of the present drawbacks of its monolitic deposition on silicon for photovoltaic applications. ...
EPFL2023
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.