Publication

EigenMaps: Algorithms for Optimal Thermal Maps Extraction and Sensor Placement on Multicore Processors

Abstract

Chip designers place on-chip sensors to measure local temperatures, thus preventing thermal runaway situations in multicore processing architectures. However, thermal characterization is directly dependent on the number of placed sensors, which should be minimized, while guaranteeing full detection of all hot-spots and worst case temperature gradient. In this paper, we present EigenMaps: a new set of algorithms to recover precisely the overall thermal map from a minimal number of sensors and a near-optimal sensor allocation algorithm. The proposed methods are stable with respect to possible temperature sensor calibration inaccuracies, and achieve significant improvements compared to the state-of-the-art. In particular, we estimate an entire thermal map for an industrial 8-core industrial design within 1"C of accuracy with just four sensors. Moreover, when the measurements are corrupted by noise (SNR of 15 dB), we can achieve the same precision only with 16 sensors.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.