A tetragonal molybdenum nitride (β-Mo2N) has been prepared by temperature programmed treatment of MoO3 in flowing N2 + H2 and for the first time shown to catalyze the liquid phase selective hydrogenation (T = 423 K; PH2=11bar) of a series of para-substituted (-H, -OH, -O-CH3, -CH3, -Cl, -I and -NO2) nitrobenzenes to give the corresponding aromatic amine. Reaction over Pd/Al2O3, as a benchmark catalyst (Pd particle size ca. 18 nm), resulted in a composite hydrodechlorination/ hydrogenation of p-chloronitrobenzene (as a representative nitroarene) to generate nitrobenzene and aniline. β-Mo2N has been characterized in terms of temperature-programmed reduction (TPR), H2 chemisorption/temperature programmed desorption (TPD), BET surface area/pore volume, elemental analysis, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopy. Elemental analysis, XRD, SEM and TEM have confirmed the formation of tetragonal β-Mo2N, characterized by an agglomeration of flake-like crystallites. Post-synthesis, the nitride was passivated by contact with 1% (v/v) O2/He at ambient temperature and XPS analysis has demonstrated the formation of a superficial passivating oxide overlayer without bulk oxidation. Pre-reaction, activation by TPR to 673 K was necessary to remove the passivating film. Hydrogen TPD has revealed significant hydrogen uptake (0.7 μmol m-2) associated with β-Mo2N. Nitro group reduction kinetics have been subjected to a Hammett treatment where the reaction constant (p = 0 4) is diagnostic of an increase in rate due to the presence of electron-withdrawing substituents on the aromatic ring, consistent with a nucleophilic mechanism. The results presented in this study establish the viability of β-Mo2N to promote selective nitroarene hydrogenation. © 2011 Elsevier B.V. All rights reserved.
Wendy Lee Queen, Jordi Espin Marti, Jocelyn Richard Roth, Till Marian Schertenleib, Nazanin Taheri, Ilia Kochetygov, Anita Justin, Sophia Alessandra Pache
Wanda Andreoni, Fabio Pietrucci, Changru Ma
Qian Wang, Jieping Zhu, Rémi Julien Sylvain Andres