Detailed knowledge of hydrocarbon radical thermochemistry is critical for understanding diverse chemical phenomena, ranging from combustion processes to organic reaction mechanisms. Unfortunately, experimental thermochemical data for many radical species tend to have large errors or are lacking entirely. Here we develop procedures for deriving high quality thermochemical data for hydrocarbon radicals by extending Wheeler et al.’s “Generalized Bond Separation Reaction” (GBSR) scheme (J. Am. Chem. Soc., 2009, 131, 2547). Moreover, we show that the existing definition of hyperhomodesmotic reactions is flawed. This is because transformation reactions, in which one molecule each from the predefined sets of products and reactants can be converted to a different product and reactant molecule, are currently allowed. This problem is corrected via a refined definition of hyperhomodesmotic reactions in which there are equal numbers of carbon-carbon bond types inclusive of carbon hybridization and number of hydrogens attached. Ab initio and DFT computations using the expanded GBSRs are applied to a newly derived test set of 27 hydrocarbon radicals (HCR27). Greatly reduced errors in computed reaction enthalpies are seen for hyperhomodesmotic and other highly balanced reactions classes, which benefit from increased matching of hybridization and bonding requirements. The best performing DFT methods for hyperhomodesmotic reactions, M06-2X and B97-dDsC, give average deviations from benchmark computations of only 0.31 and 0.44 (±0.90 and ±1.56 at the 95% confidence level) kcal/mol, respectively over the test set. By exploiting the high degree of error cancellation provided by hyperhomodesmotic reactions, accurate thermochemical data for hydrocarbon radicals (e.g., enthalpies of formation) can be computed using relatively inexpensive computational methods.
Kamiar Aminian, Farzin Dadashi, Fabien Massé, Mahdi Hamidi Rad, Vincent Gremeaux
Mohamed Farhat, Philippe Reymond
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Muhammad Waqas, Hui Wang, Seungkyu Ha, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Valérie Scheurer, Muhammad Ansar Iqbal, Lukas Layer