Publication

Light trapping in solar cells: can periodic beat random?

Abstract

Theory predicts that periodic photonic nanostructures should outperform their random counterparts in trapping light in solar cells. However, the current certified world-record conversion efficiency for amorphous silicon thin-film solar cells, which strongly rely on light trapping, was achieved on the random pyramidal morphology of transparent zinc oxide electrodes. Based on insights from waveguide theory, we develop tailored periodic arrays of nanocavities on glass fabricated by nanosphere lithography, which enable a cell with a remarkable short-circuit current density of 17.1 mA/cm(2) and a high initial efficiency of 10.9%. A direct comparison with a cell deposited on the random pyramidal morphology of state-of-the-art zinc oxide electrodes, replicated onto glass using nanoimprint lithography, demonstrates unambiguously that periodic structures rival random textures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (24)
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Thin-film solar cell
Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).
Solar-cell efficiency
Solar-cell efficiency refers to the portion of energy in the form of sunlight that can be converted via photovoltaics into electricity by the solar cell. The efficiency of the solar cells used in a photovoltaic system, in combination with latitude and climate, determines the annual energy output of the system. For example, a solar panel with 20% efficiency and an area of 1 m2 will produce 200 kWh/yr at Standard Test Conditions if exposed to the Standard Test Condition solar irradiance value of 1000 W/m2 for 2.
Show more
Related publications (34)

Carrier-selective contacts using metal compounds for crystalline silicon solar cells

Mathieu Gérard Boccard, Julie Amandine Dreon

Solar cells rely on the efficient generation of electrons and holes and the subsequent collection of these photoexcited charge carriers at spatially separated electrodes. High wafer quality is now commonplace for crystalline silicon (c-Si) based solar cell ...
WILEY2022

Electrical Losses Mitigation in Silicon Heterojunction Solar Cells

Laurie-Lou Senaud

To overcome the worldwide challenges of climate change, photovoltaics is foreseen to play a significant role in the world electricity production. Nowadays, single junction crystalline silicon (c-Si) based solar cells hold the largest share of the global ph ...
EPFL2021

Optimization of front SiNx/ITO stacks for high-efficiency two-side contacted c-Si solar cells with co-annealed front and rear passivating contacts

Christophe Ballif, Franz-Josef Haug, Xavier Niquille, Andrea Ingenito, Sylvain Nicolay, Frank Meyer

In this contribution, we present an electron selective passivating contact metallised with a low temperature process to target front side applications in crystalline silicon (c-Si) solar cells. In addition to an interfacial silicon oxide (SiOx) and an in-s ...
2020
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.