Publication

Oxygen Dissociation by Concerted Action of Di-Iron Centers in Metal-Organic Coordination Networks at Surfaces: Modeling Non-Heme Iron Enzymes

Abstract

The high chemical reactivity of unsaturated metal sites is a key factor for the development of novel devices with applications in sensor engineering and catalysis. It is also central in the research for sustainable energy concepts, e.g., the efficient production and conversion of chemical fuels. Here, we study the process of oxygen dissociation by a surface-supported metal-organic network that displays close structural and functional analogies with the cofactors of non-heme enzymes. We synthesize a two-dimensional array of chemically active di-iron sites on a Cu(001) surface where molecular oxygen readily dissociates at room temperature. We provide an atomic-level structural and electronic characterization before and after reaction by combining scanning tunneling microscopy, X-ray absorption spectroscopy, and density functional theory. The latter identifies a novel mechanism for O-2 dissociation controlled by the cooperative catalytic action of two Fe2+ ions. The high structural flexibility of the organic ligands, the mobility of the metal centers, and the hydrogen bonding formation are shown to be essential for the functionality of these active centers allowing to mimick biologically relevant reactions in a confined environment.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.