Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Frequent shifts of output and operating mode require a pump turbine with excellent stability. Current researches show that large partial flow conditions in pump mode experience positive-slope phenomena with a large head drop. The pressure fluctuation at the positive slope is crucial to the pump turbine unit safety. The operating instabilities at large partial flow conditions for a pump turbine are analyzed. The hydraulic performance of a model pump turbine is tested with the pressure fluctuations measured at unstable operating points near a positive slope in the performance curve. The hydraulic performance tests show that there are two separated positive-slope regions for the pump turbine, with the flow discharge for the first positive slope from 0.85 to 0.91 times that at the maximum efficiency point. The amplitudes of the pressure fluctuations at these unstable large partial flow conditions near the first positive slope are much larger than those at stable operating condtions. A dominant frequency is measured at 0.2 times the impeller rotational frequency in the flow passage near the impeller exit, which is believed to be induced by the rotating stall in the flow passage of the wicket gates. The test results also show hysteresis with pressure fluctuations when the pump turbine is operated near the first positive slope. The hysteresis creates different pressure fluctuations for those operation points even though their flow rates and heads are similar respectively. The pressure fluctuation characteristics at large partial flow conditions obtained by the present study will be helpful for the safe operation of pumped storage units.
Elena Vagnoni, Alessandro Morabito
Herbert Shea, Michael James Henry Smith, Vito Cacucciolo
Jürg Alexander Schiffmann, Sajjad Zakeralhoseini