Publication

Multi-Layer Representation of Energy Requirement for Site Scale Integration

Nasibeh Pouransari
2013
Poster talk
Abstract

This study presents a methodology based on the process integration techniques and multiple representation of heating and cooling requirement concept to improve the energy efficiency of a large-scale chemical plant. Considering the difficulties of data gathering in a large-scale plant, a multi-layer analysis including five levels of detail for defining energy requirement are introduced and the practice of applying the combination of these levels rather than a unique one is demonstrated. The methodology begins by generating the composite curve with the utility representation of the energy requirements. Based on the available level of the data, the composite curve is systematically improved by upgrading from the utility representation to the technological or thermodynamic ones. The single process integration (SPI) and total site integration (TSI) is performed and indicates considerable potential of energy saving. This potential has been further improved by either process condition modification or with the integration of mechanical vapour recompression (MVR) and heat pump. The Suitable energy conversion units are integrated and optimized by minimizing the energy requirement cost using the mixed integer linear programing (MILP). The optimized site utility integration increases the energy saving potential of the base-case system by 55%. Application of the proposed methodology is demonstrated through an industrial case study highlighting the different steps and the potential of this approach.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.