Publication

Molecular Engineering of a Fluorene Donor for Dye-Sensitized Solar Cells

Abstract

To improve their efficiency beyond the state-of-the-art, D-pi-A dyes must display increased spectral breadth and account for the physical limitations observed in the dye. sensitized solar cells. In particular, they should be designed to control the electron-transfer processes that ensure efficient dye-regeneration and prevent undesired electron recombination. In this article, the electronic and steric properties of a fluorene donor are engineered to meet all these requirements. This elegant donor is featured along with a cyclopentadithiophene bridge and a cyanoacrylic acid acceptor in JF419. A thorough comparison with Y123 and C218 demonstrates the relevance of the design. Relative to conventional donors, the fluorene construct described here enhances the light harvesting properties, because of its exceptional electron donating character. The functionalities used to induce the electronic push through the D-pi-A structure also provide the dye with favorable steric properties. Indeed, the substitution around the fluorene core adequately insulates the TiO2 surface from the electrolyte, which prevents back-recombination and prolongs the electron lifetime in the semiconductor. Furthermore, compared to analogous dyes, JF419 maintains nearly quantitative regeneration efficiency, despite the lower regeneration driving force. The root of this observation is contributed to a significantly more delocalized hole in the photo-oxidized JF419(center dot+), which is highlighted through transient absorption spectroscopy and quantum chemical calculations. The design principles established are relevant to the development of more comprehensive sensitizers, as evidenced by the 10.3% efficiency obtained in cobalt-based liquid dye-sensitized solar cells.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Dye-sensitized solar cell
A dye-sensitized solar cell (DSSC, DSC, DYSC or Grätzel cell) is a low-cost solar cell belonging to the group of thin film solar cells. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, a photoelectrochemical system. The modern version of a dye solar cell, also known as the Grätzel cell, was originally co-invented in 1988 by Brian O'Regan and Michael Grätzel at UC Berkeley and this work was later developed by the aforementioned scientists at the École Polytechnique Fédérale de Lausanne (EPFL) until the publication of the first high efficiency DSSC in 1991.
Solar cell
A solar cell, or photovoltaic cell, is an electronic device that converts the energy of light directly into electricity by the photovoltaic effect, which is a physical phenomenon. It is a form of photoelectric cell, defined as a device whose electrical characteristics, such as current, voltage, or resistance, vary when exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as solar panels.
Thin-film solar cell
Thin-film solar cells are made by depositing one or more thin layers (thin films or TFs) of photovoltaic material onto a substrate, such as glass, plastic or metal. Thin-film solar cells are typically a few nanometers (nm) to a few microns (μm) thick–much thinner than the wafers used in conventional crystalline silicon (c-Si) based solar cells, which can be up to 200 μm thick. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si).
Show more
Related publications (64)

Blocking the Charge Recombination with Diiodide Radicals by TiO2 Compact Layer in Dye-Sensitized Solar Cells

Nikolaos Vlachopoulos, Ulf Anders Hagfeldt, Kazuteru Nonomura

The addition of a compact titanium dioxide (TiO2) layer between the fluorine-doped tin oxide (FTO) coated glass substrate and the mesoporous TiO2 layer in the dye-sensitized solar cell (DSC) based on the iodide/triiodide redox couple (I-/I-3(-)) is known t ...
ELECTROCHEMICAL SOC INC2019

Photoelectrochemical Cells Based on Dye Sensitization for Electricity and Fuel Production

Nikolaos Vlachopoulos, Ulf Anders Hagfeldt

Dye-sensitized semiconductor oxide photoelectrodes in which light is absorbed by a monomolecular layer of dye chemisorbed on a porous oxide substrate have attracted considerable interest in the last 35 years, mainly for the conversion of sunlight to electr ...
SWISS CHEMICAL SOC2019

The fate of charge carriers in solar materials investigated by time resolved X-ray and optical spectroscopy

Fabio Giacomo Santomauro

This thesis investigates the photoinduced charge carrier dynamics of TiO2 nanoparticles and CsPbX3 (X = Cl, Br) nanocrystals, by means of ultrafast x-ray absorption spectroscopy (XAS) and transient absorption spectroscopy (TAS). TiO2 is among the most prom ...
EPFL2017
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.