Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We explore an approach to 3D people tracking with learned motion models and deterministic optimization. The tracking problem is formulated as the minimization of a differ- entiable criterion whose differential structure is rich enough for optimization to be accom- plished via hill-climbing. This avoids the computational expense of Monte Carlo methods, while yielding good results under challenging conditions. To demonstrate the generality of the approach we show that we can learn and track cyclic motions such as walking and running, as well as acyclic motions such as a golf swing. We also show results from both monocular and multi-camera tracking. Finally, we provide results with a motion model learned from multiple activities, and show how this models might be used for recognition.
Dominique Bonvin, Martand Singhal, Afaq Ahmad