Publication

Task Scheduling for Highly Concurrent Analytical and Transactional Main-Memory Workloads

Abstract

Task scheduling typically employs a worker thread per hardware context to process a dynamically changing set of tasks. It is an appealing solution to exploit modern multi-core processors, as it eases parallelization and avoids unnecessary context switches and their associated costs. Naively bundling DBMS operations into tasks, however, can result in sub-optimal usage of CPU resources: highly contending transactional workloads involve blocking tasks. Moreover, analytical queries assume they can use all available resources while issuing tasks, resulting in an excessive number of tasks and an unnecessary associated scheduling overhead. In this paper, we show how to overcome these problems and exploit the performance benefits of task scheduling for main-memory DBMS. Firstly, we use application knowledge about blocking tasks to dynamically adapt the number of workers and aid the OS scheduler to saturate CPU resources. In addition, we show that analytical queries should issue a low number of tasks in cases of high concurrency, to avoid excessive synchronization, communication and scheduling costs. To achieve that, we maintain a concurrency hint, reflecting recent CPU availability, that partitionable analytical operations can use as a limit while adjusting their task granularity. We integrate our scheduler into a commercial main-memory column-store, and show that it improves the performance of mixed workloads, by up to 12.5% for analytical queries and 370% for transactional queries.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (35)
Scheduling (computing)
In computing, scheduling is the action of assigning resources to perform tasks. The resources may be processors, network links or expansion cards. The tasks may be threads, processes or data flows. The scheduling activity is carried out by a process called scheduler. Schedulers are often designed so as to keep all computer resources busy (as in load balancing), allow multiple users to share system resources effectively, or to achieve a target quality-of-service.
Multi-core processor
A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques.
Parallel computing
Parallel computing is a type of computation in which many calculations or processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: bit-level, instruction-level, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.
Show more
Related publications (54)

Highly Parallel RTL Simulation

Verification and testing of hardware heavily relies on cycle-accurate simulation of RTL.As single-processor performance is growing only slowly, conventional, single-threaded RTL simulation is becoming impractical for increasingly complex chip designs and s ...
EPFL2024

Chaosity: Understanding Contemporary NUMA-architectures

Anastasia Ailamaki, Viktor Sanca, Hamish Mcniece Hill Nicholson, Andreea Nica, Syed Mohammad Aunn Raza

Modern hardware is increasingly complex, requiring increasing effort to understand in order to carefully engineer systems for optimal performance and effective utilization. Moreover, established design principles and assumptions are not portable to modern ...
2023

Building Chips Faster: Hardware-Compiler Co-Design for Accelerated RTL Simulation

Sahand Kashani

The demise of Moore's Law and Dennard scaling has resulted in diminishing performance gains for general-purpose processors, and so has prompted a surge in academic and commercial interest for hardware accelerators.Specialized hardware has already redefined ...
EPFL2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.