Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
WiFi base stations are increasingly deployed in both public spaces and private companies, and the increase in their density poses a significant threat to the privacy of connected users. Prior studies have provided evidence that it is possible to infer the social ties of users from their location and co-location traces but they lack one important component: the comparison of the inference accuracy between an internal attacker (e.g., a curious application running on a mobile device) and a realistic external eavesdropper in the same field trial. In this paper, we experimentally show that such an eavesdropper is able to infer the type of social relationships between mobile users better than an internal attacker. Moreover, our results indicate that by exploiting the underlying social community structure of mobile users, the accuracy of the inference attacks doubles. Based on our findings, we propose countermeasures to help users protect their privacy against eavesdroppers.
Pavlos Nikolopoulos, Muhammad Abdullah
,