Publication

Optimization and Stabilization of Electrodeposited Cu2ZnSnS4 Photocathodes for Solar Water Reduction

Abstract

Cu2ZnSnS4 (CZTS) is a promising p-type semiconductor that has not yet been extensively investigated for solar fuel production via water splitting. Here, we optimize and compare two different electrodeposition routes (simultaneous and sequential) for preparing CZTS electrodes. More consistent results are observed with the simultaneous route. In addition, the effect of etching and the presence of a CdS buffer layer on the photocurrent are investigated. Finally, we demonstrate for the first time the stabilization of these electrodes using protecting overlayers deposited by atomic layer deposition (ALD). Our best performing protected electrodes (Mo/CZTS/CdS/AZO/TiO2/Pt) exhibited a photocurrent of over 1 mA cm(-2) under standard one sun illumination conditions and a significant improvement in stability over unprotected electrodes.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.