Publication

BMP signaling specifies the development of a large and fast CNS synapse

Abstract

excitatory synapses with multiple active zones ensure reliable and fast information transfer at specific points in neuronal circuits. However, the mechanisms that determine synapse size in CNS circuits are largely unknown. Here we use the calyx of Held synapse, a major relay in the auditory system, to identify and study signaling pathways that specify large nerve terminal size and fast synaptic transmission. Using genome-wide screening, we identified bone morphogenetic proteins (BMPs) as candidate signaling molecules in the area of calyx synapses. Conditional deletion of BMP receptors in the auditory system of mice led to aberrations of synapse morphology and function specifically at the calyx of Held, with impaired nerve terminal growth, loss of monoinnervation and less mature transmitter release properties. Thus, BMP signaling specifies large and fast-transmitting synapses in the auditory system in a process that shares homologies with, but also extends beyond, retrograde BMP signaling at Drosophila neuromuscular synapses.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.