Publication

Impact of saturation on the polariton renormalization in III-nitride based planar microcavities

Abstract

It has been widely observed that an increasing carrier density in a strongly coupled semiconductor microcavity (MC) alters the dispersion of cavity polaritons, below and above the condensation threshold. The interacting nature of cavity polaritons stems from their excitonic fraction being intrinsically subject to Coulomb interactions and the Pauli-blocking principle at high carrier densities. By means of injection-dependent photoluminescence studies performed nonresonantly on a GaN-based MC at various temperatures, it is shown that already below the condensation threshold saturation effects generally dominate over any energy variation in the excitonic resonance. This observation is in sharp contrast to the usually assumed picture in strongly coupled semiconductor MCs, where the impact of saturation is widely neglected. These experimental findings are confirmed by tracking the exciton emission properties of the bare MC active medium and those of a high-quality single GaN quantum well up to the Mott density. The systematic investigation of renormalization up to the polariton condensation threshold as a function of lattice temperature and exciton-cavity photon detuning is strongly hampered by photonic disorder. However, when overcoming the latter by averaging over a larger spot size, a behavior in agreement with a saturation-dominated polariton renormalization is revealed. Finally, a comparison with other inorganic material systems suggests that for correctly reproducing polariton renormalization, exciton saturation effects should be taken into account systematically.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.