Publication

Model-based Sparse Component Analysis for Multiparty Distant Speech Recognition

Afsaneh Asaei
2013
Non-EPFL thesis
Abstract

This research takes place in the general context of improving the performance of the Distant Speech Recognition (DSR) systems, tackling the reverberation and recognition of overlap speech. Perceptual modeling indicates that sparse representation exists in the auditory cortex. The present project thus builds upon the hypothesis that incorporating this information in DSR front-end processing could improve the speech recognition performance in realistic conditions including overlap and reverberation. More specifically, the goal of my PhD thesis is to exploit blind (source) separation of the speech components in a sparse space, also referred to as sparse component analysis (SCA), for multi-party multi-channel speech recognition.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.