Publication

Supercurrents through gated superconductor–normal-metal–superconductor contacts: The Josephson transistor

Daniel Kuhn
2001
Journal paper
Abstract

We analyze the transport through a narrow ballistic superconductor–normal-metal–superconductor Josephson contact with nonideal transmission at the superconductor–normal-metal interfaces, e.g., due to insulating layers, effective mass steps, or band misfits (SIN interfaces). The electronic spectrum in the normal wire is determined through the combination of Andreev reflection and normal reflection at the SIN interfaces. Strong normal scattering at the SIN interfaces introduces electron- and holelike resonances in the normal region that show up in the quasiparticle spectrum. These resonances have strong implications for the critical supercurrent Ic that we find to be determined by the lowest quasiparticle level: tuning the potential μx0 to the points where electron- and holelike resonances cross, we find sharp peaks in Ic, resulting in a transistor effect. We compare the performance of this resonant Josephson-transistor with that of a superconducting single electron transistor.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.