Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Titanium alloys manifest low thermal conductivity and high work hardenability in machining. These alloys are thus considered as difficult-to-machine at higher cutting speeds and pose serious problems in machining such as degraded machined surface and rapid tool-wear. Mostly, the integrity of the machined surface is assessed by post-process microscopic examination or by metallurgical testing techniques where machined workpiece needs to be further processed to perform subsequent testing on sophisticated equipment in usually meticulous ways. This study presents a qualitative but simple approach for the rapid characterization of the machined surface integrity in high-speed milling of titanium alloy. It has been established empirically that the chip morphology carries significant information about the machined surface integrity, and hence, can be considered as a reliable representative of the machined surface integrity.
Eric Boillat, Alexandre Masserey, Bastian Meylan
William Curtin, Daniel John Gilles Marchand