Publication

A highly efficient extraction protocol for magnetic particles on a digital microfluidic chip

Abstract

We present a novel, simple and highly efficient protocol for the extraction of magnetic particles out of individual droplets on a digital lab-on-chip in the presence of a spatially fixed magnet with a permanent magnetic field. In this approach, the particles were extracted from the droplet by the interplay of capillary, magnetic and electrowetting forces, thereby avoiding the use of mechanical components that would be needed for removing the magnet when particle resuspension is required. This droplet manipulation allowed the execution of very efficient and fast washing protocols on the digital microfluidic (DMF) platform. To demonstrate the effectiveness of this particle extraction protocol, an IgG immunoassay was implemented on the DMF platform. Our improved protocol reduced the overall assay variability to 3% coefficient of variation (CV) while all incubation and washing steps were automatically performed on-chip. In addition, the suspended magnetic particles allowed the introduction of a very efficient mixing strategy by using the magnetic particles as magnetic stirrers, resulting in an improvement of 90% in detection limit compared to a passive mixing strategy, solely based on diffusion. (C) 2014 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Droplet-based microfluidics
Droplet-based microfluidics manipulate discrete volumes of fluids in immiscible phases with low Reynolds number and laminar flow regimes. Interest in droplet-based microfluidics systems has been growing substantially in past decades. Microdroplets offer the feasibility of handling miniature volumes (μl to fl) of fluids conveniently, provide better mixing, encapsulation, sorting, sensing and are suitable for high throughput experiments.
Microfluidics
Microfluidics refers to a system that manipulates a small amount of fluids ((10−9 to 10−18 liters) using small channels with sizes ten to hundreds micrometres. It is a multidisciplinary field that involves molecular analysis, biodefence, molecular biology, and microelectronics. It has practical applications in the design of systems that process low volumes of fluids to achieve multiplexing, automation, and high-throughput screening.
Magnet
A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets. A permanent magnet is an object made from a material that is magnetized and creates its own persistent magnetic field. An everyday example is a refrigerator magnet used to hold notes on a refrigerator door.
Show more
Related publications (74)

Unveiling the Rolling to Kayak Transition in Propelling Nanorods with Cargo Trapping and Pumping

Ignacio Pagonabarraga Mora

Magnetic nanorods driven by rotating fields in water can be rapidly steered along any direction while generating strong and localized hydrodynamic flow fields. Here we show that, when raising the frequency of the rotating field, these nanopropellers underg ...
AMER CHEMICAL SOC2023

Long Spin Lifetime in Rare-Earth Single-Atom Magnets at Surfaces

Boris Sorokin

Further miniaturisation of magnetic storage devices requires an advent of new types of magnets, since classical ferromagnetic materials show lack of remanence at nano- and subnanoscale. A single atom can represent the smallest possible bit of information. ...
EPFL2022

Intergrade Joints for Nb3Sn cables of high magnetic field magnets

Vincenzo D'Auria

The objective of this thesis is the development of high-field and high-current joints between Nb3Sn cables for superconducting coils. The main fields of application are high energy physics (HEP) and thermonuclear fusion. In this thesis, the focus is on Win ...
EPFL2022
Show more
Related MOOCs (32)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.