Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Monitoring the attentive and emotional status of the driver is critical for the safety and comfort of driving. In this work a real-time non-intrusive monitoring system is developed, which detects the emotional states of the driver by analyzing facial expressions. The system considers two negative basic emotions, anger and disgust, as stress related emotions. We detect an individual emotion in each video frame and the decision on the stress level is made on sequence level. Experimental results show that the developed system operates very well on simulated data even with generic models. An additional pose normalization step reduces the impact of pose mismatch due to camera setup and pose variation, and hence improves the detection accuracy further.
Roland John Tormey, Nihat Kotluk
,