Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
To explore the doping dependence of the recently discovered charge-density-wave (CDW) order in YBa2Cu3Oy, we present a bulk-sensitive high-energy x-ray study for several oxygen concentrations, including strongly underdoped YBa2Cu3O6.44. Combined with previous data around the so-called 1/8 doping, we show that bulk CDW order exists at least for hole concentrations (p) in the CuO2 planes of 0.078 less than or similar to p less than or similar to 0.132. This implies that CDW order exists in close vicinity to the quantum critical point for spin-density-wave (SDW) order. In contrast to the pseudogap temperature T*, the onset temperature of CDW order decreases with underdoping to T-CDW similar to 90 K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic field as samples closer to p = 1/8. At low p the CDW incommensurability continues the previously reported linear increasing trend with underdoping. In the entire doping range the in-plane correlation length of the CDW order in b axis direction depends only very weakly on the hole concentration, and appears independent of the type and correlation length of the oxygen-chain order. The onset temperature of the CDW order is remarkably close to a temperature T-dagger that marks the maximum of 1/(T1T) in planar Cu-63 NQR/NMR experiments, potentially indicating a response of the spin dynamics to the formation of the CDW. Our discussion of these findings includes a detailed comparison to the charge stripe order in La2-xBaxCuO4.
Philip Johannes Walter Moll, Chunyu Guo, Hao Yang
, , ,