Publication

Nanocrystalline Low-Refractive Magnesium Fluoride Films Deposited by Reactive Magnetron Sputtering: Optical and Structural Properties

Abstract

In this work, we study MgF2 thin-film synthesis by reactive pulsed DC magnetron sputtering from a metallic magnesium target in a gas mixture of argon, oxygen, and carbon tetrafluoride (CF4). Nanocrystalline films on silicon and glass substrates with excellent properties for optical application are achieved. The plasma discharge is analyzed with a differentially pumped mass spectrometer before and during the deposition process. Without breaking the vacuum, monochromatic photoelectron spectroscopy (XPS) is performed for in situ determination of the atomic C and O concentration. Film microstructure, topography, and thickness are investigated by electron microscopy (SEM and TEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The optical constants n and k are determined by spectroscopic ellipsometry and spectrophotometry: a consistent parametric fit of the ellipsometric angles and spectral transmittance and reflectance based on three Lorentz oscillators to determine n and k is achieved for a wide spectral range (300–2 300 nm). At 550 nm, a refractive index of 1.382 and near-zero absorption is obtained, which is in excellent agreement with n = 1.383 of polycrystalline MgF2. The measured light reflection at 760 nm is reduced by 3% for a quarter-wave nanocrystalline MgF2 coating on glass compared to the uncoated glass substrate.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.