Publication

Proliferation, Morphology, and Pluripotency of Mouse Induced Pluripotent Stem Cells in Three Different Types of Alginate Beads for Mass Production

Yoji Tabata
2014
Journal paper
Abstract

Induced pluripotent stem cells (iPSCs) are expected to be an ideal cell source for biomedical applications, but such applications usually require a large number of cells. Suspension culture of iPSC aggregates can offer high cell yields but sometimes results in excess aggregation or cell death by shear stress. Hydrogel-based microencapsulation can solve such problems observed in Suspension culture, but there is no systematic evaluation of the possible capsule formulations. In addition, their biological effects on entrapped cells are still poorly studied so far. We, therefore, immobilized mouse iPSCs in three different types of calcium-alginate (Alg-Ca) hydrogel-based microcapsules; (i) Alg-Ca capsules without further treatment (Naked), (ii) Alg-Ca capsules with poly-L-lysine (PLL) coating (Coated), and (iii) Alg-PLL membrane capsules with liquid cores (Hollow). After 10 days of culture within the medium containing serum and leukemia inhibitory factor, we obtained good cellular expansions (10-13-fold) in Coated and Hollow capsules that were similar to Suspension culture. However, 32 +/- 9% of cellular leakage and lower cell yield (about threefold) were observed in Naked capsules. This was not observed in Coated and Hollow capsules. In addition, immunostaining and quantitative RT-PCR showed that the formation of primitive endodermal layers was suppressed in Coated capsules contrary to all other formulations. This agenesis of primitive endoderm layers in Coated capsules is likely to be the main cause of the significantly better pluripotency maintenance in hydrogel-based encapsulation culture. These results are helpful in further optimizing hydrogel-based iPSC culture, which can maintain better local cellular environments and be compatible with mass culture. (C) 2014 American Institute of Chemical Engineers

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (39)
Induced pluripotent stem cell
Induced pluripotent stem cells (also known as iPS cells or iPSCs) are a type of pluripotent stem cell that can be generated directly from a somatic cell. The iPSC technology was pioneered by Shinya Yamanaka and Kazutoshi Takahashi in Kyoto, Japan, who together showed in 2006 that the introduction of four specific genes (named Myc, Oct3/4, Sox2 and Klf4), collectively known as Yamanaka factors, encoding transcription factors could convert somatic cells into pluripotent stem cells.
Stem cell
In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type of cell in a cell lineage. They are found in both embryonic and adult organisms, but they have slightly different properties in each. They are usually distinguished from progenitor cells, which cannot divide indefinitely, and precursor or blast cells, which are usually committed to differentiating into one cell type.
Cell potency
Cell potency is a cell's ability to differentiate into other cell types. The more cell types a cell can differentiate into, the greater its potency. Potency is also described as the gene activation potential within a cell, which like a continuum, begins with totipotency to designate a cell with the most differentiation potential, pluripotency, multipotency, oligopotency, and finally unipotency. Totipotency (Lat. totipotentia, "ability for all [things]") is the ability of a single cell to divide and produce all of the differentiated cells in an organism.
Show more
Related publications (77)

Deciphering the nature of cell state transitions in single cells using quantitative modeling of temporal dynamics

Alex Russell Lederer

Cells are the smallest operational units of living systems. Through synthesis of various biomolecules and exchange of signals with the environment, cells tightly regulate their composition to realize a specific functional state. The transformation of a cel ...
EPFL2024

Technology Mapping Using Multi-output Library Cells

Giovanni De Micheli, Alessandro Tempia Calvino

Technology mapping transforms a technology-independent representation into a technology-dependent one given a library of cells. Even if technology libraries contain multi-output cells, state-of-the-art techniques fully exploit single-output cells only. Mul ...
2023

Multimodal characterization of murine gastruloid development

Matthias Lütolf, Alexandre Gauthier Aurèle Mayran, Stefano Davide Vianello, Raphaël Ortiz

Gastruloids are 3D structures generated from pluripotent stem cells recapitulating fundamental principles of embryonic pattern formation. Using single-cell genomic analysis, we provide a resource mapping cell states and types during gastruloid development ...
CELL PRESS2023
Show more
Related MOOCs (13)
Introduction à l'immunologie (part 1)
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.