Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
La 0.8Sr 0.2CrO 3 (LSC) based Ru catalysts are very active in methane steam reforming. Nevertheless, they can be easily poisoned under water-deficient conditions. Ru can be deposited as metallic ruthenium particles decorating the LSC grains or be inserted as Ru ions in the perovskite structure. Both Ru-promoted LSC catalysts were studied in methane steam reforming under water-deficient conditions and characterized after testing. Catalytic activity tests showed that ruthenium metal species are deactivated under water-deficient atmosphere, while ruthenium species inserted in LSC presented a remarkable stability and catalytic activity where residual steam plays a key role. Very unreactive carbon species responsible for deactivation were detected by temperature-programmed oxidation and transmission electron microscopy over metallic ruthenium species. Such species were not observed when ruthenium species are inserted and stabilized into the LSC structure. La 0.8Sr 0.2Cr 0.98Ru 0.02O 3 appears therefore as a highly promising anti-coking anode material for Solid Oxide Fuel Cells directly fed with methane or natural gas and operating under water-deficient conditions. © 2012 Elsevier Inc. All rights reserved.