Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Hardware trends oblige software to overcome three major challenges against systems scalability: (1) taking advantage of the implicit/vertical parallelism within a core that is enabled through the aggressive micro-architectural features, (2) exploiting the explicit/horizontal parallelism provided by multicores, and (3) achieving predictively efficient execution despite the variability in communication latencies among cores on multisocket multicores. In this three hour tutorial, we shed light on the above three challenges and survey recent proposals to alleviate them. The first part of the tutorial describes the instruction- and data-level parallelism opportunities in a core coming from the hardware and software side. In addition, it examines the sources of under-utilization in a modern processor and presents insights and hardware/software techniques to better exploit the microarchitectural resources of a processor by improving cache locality at the right level of the memory hierarchy. The second part focuses on the scalability bottlenecks of database applications at the level of multicore and multisocket multicore architectures. It first presents a systematic way of eliminating such bottlenecks in online transaction processing workloads, which is based on minimizing unbounded communication, and shows several techniques that minimize bottlenecks in major components of database management systems. Then, it demonstrates the data and work sharing opportunities for analytical workloads, and reviews advanced scheduling mechanisms that are aware of nonuniform memory accesses and alleviate bandwidth saturation.
Anastasia Ailamaki, Georgios Psaropoulos
, , ,
Anastasia Ailamaki, Viktor Sanca