Publication

Spectral cola or how to turn green laser light red

Abstract

A green laser pointer shone through a glass of cola will appear red when looking from above the glass. Lowering the laser so that it is deeper in the cola, the colour will vary from orange to deep red. Fluorescence and absorption spectra were recorded consistent with the reddening of the laser. The depth dependence of the colour of the immersed laser is attributed to a more significant absorption of the short wavelengths by the cola, making the laser look redder as it is lowered deeper into the cola. To confirm this hypothesis, we simulated the fluorescence spectrum we would get at various depths by applying the Lambert law on our measured fluorescence spectrum. These spectra were then converted into red, green and blue (RGB) values. These values were compared to those measured on images of the immersed laser beam at corresponding depths.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Fluorescence spectroscopy
Fluorescence spectroscopy (also known as fluorimetry or spectrofluorometry) is a type of electromagnetic spectroscopy that analyzes fluorescence from a sample. It involves using a beam of light, usually ultraviolet light, that excites the electrons in molecules of certain compounds and causes them to emit light; typically, but not necessarily, visible light. A complementary technique is absorption spectroscopy. In the special case of single molecule fluorescence spectroscopy, intensity fluctuations from the emitted light are measured from either single fluorophores, or pairs of fluorophores.
Fluorescence
Fluorescence is the emission of light by a substance that has absorbed light or other electromagnetic radiation. It is a form of luminescence. In most cases, the emitted light has a longer wavelength, and therefore a lower photon energy, than the absorbed radiation. A perceptible example of fluorescence occurs when the absorbed radiation is in the ultraviolet region of the electromagnetic spectrum (invisible to the human eye), while the emitted light is in the visible region; this gives the fluorescent substance a distinct color that can only be seen when the substance has been exposed to UV light.
Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow. A laser differs from other sources of light in that it emits light that is coherent.
Show more
Related publications (48)

NIR Fluorescence lifetime macroscopic imaging with a time-gated SPAD camera

Edoardo Charbon, Claudio Bruschini, Arin Can Ülkü

The performance of SwissSPAD2 (SS2), a large scale, widefield time-gated CMOS SPAD imager developed for fluorescence lifetime imaging, has recently been described in the context of visible range and fluorescence lifetime imaging microscopy (FLIM) of dyes w ...
SPIE-INT SOC OPTICAL ENGINEERING2022

Defect formation and mitigation during laser powder bed fusion of copper

Carl Tore Viktor Lindström

Additive manufacturing (AM) is a group of processing technologies which has the potential to revolutionize manufacturing by allowing easy manufacturing of complex shapes and small series. One AM-method which is of high interest for processing of metals is ...
EPFL2021

ULTRASTABLE LASER SYSTEM FOR SPECTROSCOPY OF THE 1.14 mu m INNER-SHELL CLOCK TRANSITION IN Tm AND ITS ABSOLUTE FREQUENCY MEASUREMENT

Sergey Fedorov

We characterize a 1.14 mu m ultrastable semiconductor laser system for precision spectroscopy of Tm inner-shell clock transition using a frequency comb. We stabilize both the repetition and the carrier-envelope offset frequencies of a commercial Ti : sapph ...
SPRINGER2019
Show more
Related MOOCs (3)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.