Publication

Metabolic expressivity of human genetic variants: NMR metabotyping of MEN1 pathogenic mutants

David Lyndon Emsley
2014
Journal paper
Abstract

Functional consequences of mutations in predisposition genes for familial cancer syndromes remain often elusive, especially when the corresponding gene products play pleiotropic functions and interact with numerous partners. Understanding the consequences of these genetic alterations requires access to their functional effects at the phenotypic level. Nuclear magnetic resonance (NMR) has emerged as a promising functional genomics probe, through its ability to monitor the consequences of genetic variations at the biochemical level. Here, we determine by NMR the metabolic perturbations associated with different disease-related mutations in the MEN1 gene, responsible for the multiple endocrine neoplasia syndrome, type 1 (MEN1), an example of hereditary cancer. The MEN1 gene encodes the Menin protein. Based on a cellular model that allows exogenous overexpression of either the wild type (WT) Menin protein or disease-related variant forms, we evaluate the feasibility of using metabolic profiles to discriminate cells with WT versus variant Menin overexpression. High-resolution magic angle spinning (HRMAS) NMR of whole cells allows to determine the metabolic features associated with overexpression of WT Menin as compared to the one of six different missense variants observed in MEN1 patients. We then identify several statistically significant individual metabolites associated with the metabolic signature of pathogenic versus WT variants. Whether such a metabolic phenotyping approach using cell lines could be exploited as a functional test in a human genetic cancer syndrome is further discussed. (C) 2013 Elsevier B.V. All rights reserved.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (44)
Hereditary nonpolyposis colorectal cancer
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is an autosomal dominant genetic condition that is associated with a high risk of colon cancer as well as other cancers including endometrial cancer (second most common), ovary, stomach, small intestine, hepatobiliary tract, upper urinary tract, brain, and skin. The increased risk for these cancers is due to inherited genetic mutations that impair DNA mismatch repair. It is a type of cancer syndrome.
Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca.
Hereditary cancer syndrome
A hereditary cancer syndrome (familial/family cancer syndrome, inherited cancer syndrome, cancer predisposition syndrome, cancer syndrome, etc.) is a genetic disorder in which inherited genetic mutations in one or more genes predispose the affected individuals to the development of cancer and may also cause early onset of these cancers. Hereditary cancer syndromes often show not only a high lifetime risk of developing cancer, but also the development of multiple independent primary tumors.
Show more
Related publications (38)

Immunosuppressive roles of Activin-A in melanoma and characterization of its precursor cleavage

Katarina Pinjusic

Activin-A, a transforming growth factor ꞵ family member, is a pleiotropic cytokine with diverse functions in development, fertility, adult tissue homeostasis, and aging. Accordingly, deregulation of Activin-A signaling has been associated with many patho ...
EPFL2022
Show more
Related MOOCs (16)
Basic Steps in Magnetic Resonance
A MOOC to discover basic concepts and a wide range of intriguing applications of magnetic resonance to physics, chemistry, and biology
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.