Publication

Through-bond heteronuclear single-quantum correlation spectroscopy in solid-state NMR, and comparison to other through-bond and through-space experiments

David Lyndon Emsley
2001
Journal paper
Abstract

A new through-bond carbon-proton correlation technique, the MAS-J-HSQC experiment, is described for solid-state NMR. This new pulse scheme is compared experimentally with the previously proposed MAS-J-HMQC experiment in terms of proton resolution on a model sample of powdered L-alanine. We show that for natural abundance compounds, the MAS-J-HMQC and MAS-J-HSQC experiments give about the same proton resolution, whereas, for C-13-labeled materials, narrower proton linewidths are obtained with the MAS-J-HSQC experiment. In addition we show that in scalar as well as in dipolar heteronuclear shift correlation experiments, when the proton chemical shift is encoded by the evolution of a single-quantum coherence, the proton resolution can be enhanced by simply adding a 180 degrees carbon pulse in the middle of the t(1) evolution time. (C) 2001 Academic Press.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.