Publication

Near-Infrared Optical Tomography with Single-Photon Avalanche Diode Image Sensors

Juan Mata Pavia
2015
EPFL thesis
Abstract

In the past decades different methods based on magnetic resonance imaging (MRI) and positron emission tomography (PET) have been developed to image a variety of hemodynamic parameters in tissue. However, simultaneous high resolution imaging of oxy- and deoxyhemoglobin is not yet possible in clinical practices with millimeter accuracy. Near-infrared Spectroscopy (NIRS) is a well established technique that has been widely utilized in research and clinical practice to monitor the concentration of different chromophores in blood. It is capable of measuring a variety of parameters such as oxygenation levels in tissue, hematocrit, and cytochrome c oxidase levels among others. By increasing the amount and complexity of the light sources and detectors integrated in NIRS systems, in the last years researchers have been able to acquire tomographic images of such chromophores. This new imaging modality is known by different names: near-infrared optical tomography (NIROT), optical tomography (OT), diffuse optical tomography (DOT), or diffuse optical imaging (DOI). One of the main factors that limited the quality of the tomographic images obtained with NIROT has been the low number of sources and detectors employed in NIROT systems. The integration of the first single-photon avalanche diode (SPAD) together with time-to-digital converters (TDCs) in CMOS enabled a whole new range of possibilities in the field of single-photon detection. In this thesis the application of a SPAD-TDC image sensor in NIROT is presented for the first time. The main objective was to develop a new system that could perform acquisitions nearly in real time and that was capable of delivering tomographic images in a short period of time for medical evaluation. A new optical setup was conceived based on this detector to take advantage of the large amount of information delivered by the SPADs. By employing line-shaped illumination sources instead of point like sources, the target is more homogeneously illuminated and consequently a reduced number of sources is necessary. It was experimentally demonstrated that a resolution of 5 mm is possible with this new NIROT system. New algorithms that reduced the ill-posed nature of the image reconstruction problem were developed thanks to the wide-field time-resolved measurements delivered by the SPAD image sensors. The large datasets obtained with our NIROT system and its time-resolved capabilities enabled the development of fast methods capable of reconstructing an image with millimeter resolution in a few seconds with a laptop computer. We also analyze the effect of microlenses on the light sensitivity of the image sensor, showing that it is possible to increase it by a factor of 10 under certain conditions. A new image sensor with 4x400 pixels implemented in a 3D CMOS technology for NIROT applications is also presented. To our knowledge, this is the first backside illuminated SPAD array that incorporates in-pixel TDCs. A novel TDC architecture was introduced that reduces the energy consumed per conversion, consequently allowing a high number of TDCs working in parallel. The study of how NIROT can benefit from SPAD image sensors is presented in this thesis. Despite their current limitations, they enable the implementation of systems with thousands of detectors capable of millimeter resolution. Further developments in SPAD array architectures and TDCs will continue improving the performance of time-resolved NIROT systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (37)
Medical optical imaging
Medical optical imaging is the use of light as an investigational imaging technique for medical applications, pioneered by American Physical Chemist Britton Chance. Examples include optical microscopy, spectroscopy, endoscopy, scanning laser ophthalmoscopy, laser Doppler imaging, and optical coherence tomography. Because light is an electromagnetic wave, similar phenomena occur in X-rays, microwaves, and radio waves. Optical imaging systems may be divided into diffusive and ballistic imaging systems.
Single-photon emission computed tomography
Single-photon emission computed tomography (SPECT, or less commonly, SPET) is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera (that is, scintigraphy), but is able to provide true 3D information. This information is typically presented as cross-sectional slices through the patient, but can be freely reformatted or manipulated as required.
Medical imaging
Medical imaging is the technique and process of imaging the interior of a body for clinical analysis and medical intervention, as well as visual representation of the function of some organs or tissues (physiology). Medical imaging seeks to reveal internal structures hidden by the skin and bones, as well as to diagnose and treat disease. Medical imaging also establishes a database of normal anatomy and physiology to make it possible to identify abnormalities.
Show more
Related publications (86)

Silicon CMOS and InGaAs(P)/InP SPADs for NIR/SWIR detection

Utku Karaca

Applications demanding imaging at low-light conditions at near-infrared (NIR) and short-wave infrared (SWIR) wavelengths, such as quantum information science, biophotonics, space imaging, and light detection and ranging (LiDAR), have accelerated the develo ...
EPFL2024

Integrated electronics for time-of-flight positron emission tomography photodetectors

Andrada Alexandra Muntean

Positron emission tomography is a nuclear imaging technique well known for its use in oncology for cancer diagnosis and staging. A PET scanner is a complex machine which comprises photodetectors placed in a ring configuration that detect gamma photons gene ...
EPFL2023

PET REBINNING WITH REGULARIZED DENSITY SPLINES

Michaël Unser

PET reconstruction algorithms have long relied on sinogram rebinning. However, as detectors grow smaller in a recent wave of cutting-edge scanners, individual sensors no longer accrue hundreds of photons. Instead, most detect a single photon or none at all ...
New York2023
Show more
Related MOOCs (17)
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Ultrasounds, X-ray, positron emission tomography (PET) and applications
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Fundamentals of Biomedical Imaging: Magnetic Resonance Imaging (MRI)
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.