Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The current paradigm in ion trap (cell) design for Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is the ion detection with wide aperture detection electrodes. Specifically, excitation and detection electrodes are typically 90A degrees wide and positioned radially at a similar distance from the ICR cell axis. Here, we demonstrate that ion detection with narrow aperture detection electrodes (NADEL) positioned radially inward of the cell's axis is feasible and advantageous for FT-ICR MS. We describe design details and performance characteristics of a 10 T FT-ICR MS equipped with a NADEL ICR cell having a pair of narrow aperture (flat) detection electrodes and a pair of standard 90A degrees excitation electrodes. Despite a smaller surface area of the detection electrodes, the sensitivity of the NADEL ICR cell is not reduced attributable to improved excite field distribution, reduced capacitance of the detection electrodes, and their closer positioning to the orbits of excited ions. The performance characteristics of the NADEL ICR cell are comparable with the state-of-the-art FT-ICR MS implementations for small molecule, peptide, protein, and petroleomics analyses. In addition, the NADEL ICR cell's design improves the flexibility of ICR cells and facilitates implementation of advanced capabilities (e.g., quadrupolar ion detection for improved mainstream applications). It also creates an intriguing opportunity for addressing the major bottleneck in FTMS-increasing its throughput via simultaneous acquisition of multiple transients or via generation of periodic non-sinusoidal transient signals.
Thomas Rizzo, Ahmed Ben Faleh, Stephan Warnke, Ali H Abikhodr, Vasyl Yatsyna
Yury Tsybin, Anton Kozhinov, Konstantin Nagornov
Thomas Rizzo, Robert Paul Pellegrinelli, Ahmed Ben Faleh, Stephan Warnke, Natalia Yalovenko