Publication

Heat Transfer Characteristics of High Crossflow Impingement Channels: Effect of Number of Holes

Abstract

In modern turbine airfoils, narrow impingement cooling channels can be formed in a double-wall configuration. In these wall-integrated cooling cavities, the generated crossflow is one of the most important design factors, and hence, the number of impingement holes included in a channel. This study examines experimentally the influence of the number of impingement holes on the heat transfer characteristics of narrow impingement channels. The channels consist of two rows of jets where the number of holes in the axial direction is varied from 5 to 10, maintaining the same jet plate open area. Local heat transfer coefficient distributions are obtained for all channel interior walls using the transient liquid crystal technique and over a range of Reynolds numbers (20,300–41,500). The results show an important heat transfer degradation at higher open areas and a small influence of the number of holes at upstream channel positions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Heat transfer
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species (mass transfer in the form of advection), either cold or hot, to achieve heat transfer.
Thermal conduction
Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k. Heat spontaneously flows along a temperature gradient (i.e. from a hotter body to a colder body). For example, heat is conducted from the hotplate of an electric stove to the bottom of a saucepan in contact with it.
Turbine blade
A turbine blade is a radial aerofoil mounted in the rim of a turbine disc and which produces a tangential force which rotates a turbine rotor. Each turbine disc has many blades. As such they are used in gas turbine engines and steam turbines. The blades are responsible for extracting energy from the high temperature, high pressure gas produced by the combustor. The turbine blades are often the limiting component of gas turbines.
Show more
Related publications (34)

Experimental investigation and analysis of sequential jet impingement concepts for enhanced turbine cooling

Michele Gaffuri

With the future decarbonization of the electricity production, gas turbines will be an important tool for the stabilization of the electricity grid by meeting the peak of energy demand using zero-carbon fuels like synthetic gas and hydrogen.The combustion ...
EPFL2021

Multiphase transport and evaporative cooling in fuel cell gas diffusion layers

Sarah van Rooij

The use of evaporative cooling in the gas diffusion layer (GDL) of polymer electrolyte fuel cells has been proposed as a simple yet impactful solution to simultaneously provide the functionality of cell cooling, thanks to the dissipation of the latent heat ...
EPFL2021

Thermal transport beyond Fourier, and beyond Boltzmann

Michele Simoncelli

Crystals and glasses exhibit fundamentally different heat conduction mechanisms: the periodicity of crystals allows for the excitation of propagating vibrational waves that carry heat, as first discussed by Peierls in 1929, while in glasses the lack of per ...
EPFL2021
Show more
Related MOOCs (4)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Thermodynamics
Ce cours complète le MOOC « Thermodynamique : fondements » qui vous permettra de mettre en application les concepts fondamentaux de la thermodynamique. Pour atteindre cet objectif, le Professeur J.-P
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.