Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams.
Tom Ian Battin, Hannes Markus Peter, Susheel Bhanu Busi, Grégoire Marie Octave Edouard Michoud, Leïla Ezzat, Massimo Bourquin, Tyler Joe Kohler, Jade Brandani, Stylianos Fodelianakis
Devis Tuia, Julia Schmale, Nora Bergner, Ianina Altshuler, Gaston Jean Lenczner, Grace Emma Marsh